
www.manaraa.com

E S S A Y RE V I EW

Software Engineering Between Technics and Science

Recent Discussions about the Foundations
and the Scientificness of a Rising Discipline

Stefan Gruner

Published online: 20 May 2010
� Springer Science+Business Media B.V. 2010

‘‘Es steht gegenwärtig allen Wissenschaften eine Wiedergeburt in Ansehung ihrer

Begriffe und der Geistlosigkeit bevor, die wissenschaftlichen Inhalt in bloßes

Material verwandelt und die Begriffe, deren sie zu handhaben gewöhnlich nicht

einmal weiß, unkritisch und bewußtlos handhabt’’ (G.W.F. Hegel, 1807).

1 Introduction

This essay-review presents and discusses relevant recent contributions to the science-

philosophical and methodological discourse within the discipline of software engineering,

about the scientificness of this discipline, also in comparison to other, related disciplines.

The main problems in this context are exposed and explained especially for those readers

who are not software engineers themselves.

Since the ‘official’ establishment of software engineering as a discipline at the historic

NATO Science Conference 1968 in Garmisch, Germany, there has been a rising tide of

science-philosophical and methodological discussions about the degree of ‘scientificness’

and/or ‘engineeringness’ of this still young and emerging discipline. Notorious experi-

ences of spectacular technical accidents due to software failure seem to support the

opinion of the skeptics who claim that software engineering is de-facto still only ‘art’ or

‘craft’, or at most ‘technics’, but neither ‘science’ nor ‘engineering’. Indeed it was the

crisis of software engineering—not its undeniable practical success—that has triggered its

meta-scientific, methodological and philosophical reflections; people do not tend to

philosophise during care-free times of success. On the other hand there is now a wide-

spread normative agreement amongst many experts that software engineering should be

‘engineering’ and ‘science’ as far as possible, with older (and apparently more ‘suc-

cessful’) branches of engineering being looked at as ‘role models’ and encouraging

S. Gruner (&)
Department of Computer Science, Research Group for Software Science and Formal Methods,
University of Pretoria, Pretoria 0002, Republic of South Africa
e-mail: sg@cs.up.ac.za

123

J Gen Philos Sci (2010) 41:237–260
DOI 10.1007/s10838-010-9116-y



www.manaraa.com

examples. This desideratum of software engineering has then motivated further meta-

scientific and science-philosophical discussions about the criteria of scientificness and/or

engineering-ness particularly for this discipline. However, those discussions have been

carried out mostly within the discipline so far, by philosophically and meta-theoretically

minded software engineers themselves, and not so much by ‘professional’ philosophers in

the faculties of philosophy.

Throughout this essay I assume that the reader already has at least some very basic ideas

about what software engineering is and what it entails in its daily practice. In the Appendix

of this essay I have listed a small selection of interesting titles for further reading, in

support of those readers who are not very familiar with this topic. Those titles listed in the

Appendix are of course not the particular ‘references’ on which the discussions in the

subsequent sections of this essay are based.

The aim of this essay—objective information about current philosophical approaches to

software engineering, and their critique—is achieved by the classical method of literature

review, for which some relevant, ‘typical’ or ‘paradigmatic’ recent papers have been

carefully chosen. The selection criteria underlying this choice are related to the three large

groups of science-philosophical positions which can currently be observed in software

engineering’s methodological meta-discourse. For the sake of argument I shall now call

them the ‘physicalist’ group, the ‘socio-humanist’ group, and the ‘classical engineering’

group. They can be briefly characterised as follows:

1. The ‘physicalist’ group is guided by the classical leitmotiv of physics being ‘the’

paradigm of science; consequently the followers of this group are discussing software

engineering and its methodology very much in terms of ‘hypothesis’, ‘experiment’,

‘measurement’, ‘law’, etc. Philosophically they often sympathize with ‘classical’

philosophy of science, which has also been very much physics-oriented all the time.

2. Followers of what I call the ‘socio-humanist’ group, on the contrary, emphasise that

‘software is made by people for people’; consequently they look at the practice of

software engineering very much through the lenses of sociology and psychology,

thereby often rejecting the so-called ‘positivist’ viewpoints of the ‘physicalists’,

especially the so-called ‘positivist’ desire for measurement and law-based predicta-

bility. Often the ‘socio-humanists’ also emphasise ‘pragmatism’ and ‘flexibility’ the

face of the ‘human needs’, in contrast to the rigorous ‘procedures’ recommended by

the ‘engineers’. It comes to no surprise that various members of the ‘socio-humanist’

group have found quite some inspiration in various ‘anti-establishment’ philosophies,

e.g.: the School of Frankfurt, the doctrines of socio-constructivism, etc.

3. Last but not least there is the third group of the ‘engineers’, who prefer to have

software engineering like a classical ‘engineering’ discipline (rather than a ‘science’),

with a particularly strong emphasis on the industrial production of technical artefacts

on the basis of well-established, time-proven production processes and a highly

standardized ‘body of knowledge’ (BOK) gathered in readily applicable engineering

hand-books. They have found much inspiration in various books about modern

philosophy of engineering—see Appendix for some examples of such books.

Of course there can also be various ‘hybrid’ positions somewhere in the middle between

those three extremes. There are even further science-philosophical positions about software

engineering, such as Dijkstra’s ‘mathematicalism’ which would prefer to see software

construction almost as a branch of applied mathematics without much reference to any

material processes. However, that position is rather rare and therefore not in the focus of

this essay.

238 S. Gruner

123



www.manaraa.com

Each of the papers (Gregg et al. 2001; Rombach and Seelisch 2008; Maibaum 2008)

which will be discussed in the subsequent sections of this essay can be regarded as a

‘typical’ example which is representative of one of those three science-philosophical

positions about software engineering. On the bases of these discussions, this essay also

proposes a preliminary definition of the term ‘software science’ as an original contribution

to this discourse.

Last but not least this essay also briefly discusses one paper which does not fall clearly

into any of the above-mentioned groups (Logrippo 2007), for its interesting elaboration on

the notion of ‘law’. This is a key concept at the intersection of the domain of the natural

sciences (‘law of nature’), the domain of the formal sciences (‘law of mathematics’) as

well as the domain of the human sciences (‘law of justice’); the discussion will also hint at

why and how the notion of ‘law’ is relevant in the domain of software engineering

(particularly its sub-domain of requirements specifications), too.

In summary, one could thus argue that (Logrippo 2007), via the notion of ‘law’, could

perhaps offer some kind of bridge across the philosophical and methodological gaps

between the ‘physicalists’ (Rombach and Seelisch 2008), the ‘socio-humanists’ (Gregg

et al. 2001), and the ‘engineers’ (Maibaum 2008) in the science-philosophical meta-dis-

course of software engineering as an emerging discipline.

2 Philosophical Underpinnings of Software Engineering Research
in Information Systems

In this section, an interesting article with the above-mentioned title, published by D.G.

Gregg, U.R. Kulkarni, and A.S. Vinze (Gregg et al. 2001) in ‘‘Information Systems

Frontiers’’, will be discussed. Their article is about the Information Systems (IS) discipline

and related research which focuses on the development, understanding, and use of infor-

mation technology for business needs. Thereby particularly software is the basis of IS

research, thus making software engineering a critical issue of research in the IS domain.

However, according to (Gregg et al. 2001), whilst the importance of software development

is well accepted, what constitutes high quality software engineering research is not well

defined. Perhaps this is, according to (Gregg et al. 2001), because some software devel-

opment clearly is not ‘research’ and it is also hard to distinguish between pure application

development, and systems development that pushes the boundaries of knowledge. Their

article suggests that software engineering can meet Popper’s criteria for scientific research.

Drawing on well-established research philosophies, Gregg et al. (2001) proposed a soft-

ware engineering research methodology (SERM) and discussed the utility of this meth-

odology for contributing to and expanding the IS body of knowledge. They also described

some considerations that need to be addressed by SERM to enhance acceptability of

software engineering research in IS.

In the following discussion of that paper, all verbatim quotations in this section are

taken from (Gregg et al. 2001); only the page numbers (p. xyz) will be explicitly given

after every quotation. Also throughout this section, the term ‘Information Systems’ (IS)

stands for a sub-discipline in informatics and software engineering, not for the concrete

information systems as technical artefacts which are produced by the practitioners of that

discipline.

As mentioned in the introduction, Gregg et al. (2001) was chosen as an example of the

‘socio-humanist’ approach to software engineering, whereby technical or technological

issues do not come to the foreground. It is a methodological paper that deals with the

Recent Discussions About the Foundations and the Scientificness 239

123



www.manaraa.com

question of the scientificness of software engineering, with a particular focus on a clas-

sification of published papers (i.e.: a meta-study) of software-engineering-related works in

the domain of business-oriented IS. Positively we note about (Gregg et al. 2001) that an

interdisciplinary attempt towards a philosophical understanding of software engineering is

made. However, it must be critically asked if their understanding of ‘software engineering’

is fully adequate, and if their notion of ‘philosophical’ is accurate enough to justify the

classification of their paper as a suitable resource for a philosophical meta theory of

software engineering under the umbrella of a general philosophy of science and technol-

ogy: ‘‘Software engineering as a research methodology […] can be defined as an approach

that allows the synthesis and expression of new technologies and new concepts in a

tangible product that can […] contribute to basic research and serve as an impetus to

continuous research.’’ (p. 169). Further it is stated that ‘‘the development of a software

system, by itself, is usually not regarded as serious research’’ (p. 169). Consequently,

‘‘there is disagreement as to whether software engineering represents a scientific method of

enquiry’’, and ‘‘no accepted standard and very few rules are available to govern the way

software engineering research is conducted’’ (p. 170).

Here we can clearly see a general science-philosophical question at the horizon, namely

the question about the criteria that a network of activities must fulfill in order to be

rightfully called ‘research’. Alas, one can find rather different answers to that question not

only in different eras of history, but also in different academic domains within the same

historical period—remember only the notorious ‘Positivismusstreit’ in sociology between

the schools of ‘Critical Rationalism’ and ‘Critical Theory’ in the previous century. Con-

sequently it would come to no surprise if an IS manager’s opinion about the research-ness

of ‘software engineering research’ would differ considerably from a computer scientist’s

opinion about the research-ness of ‘software engineering research’, which would then lead

to the general science-philosophical question if those opinions could possibly be reconciled

under a common conceptual roof.

The paper continues with the claim that ‘‘how software engineering research is per-

formed is left almost entirely up to the individual researcher. This creates difficulties for

reviewers trying to determine whether a given software development project constitutes

high quality research’’ (p. 170). In introspection I found that statement rather surprising, for

I usually do not subjectively feel such ‘‘difficulty’’ when acting as a reviewer for software

engineering conferences; it seems that there is almost certainly an element of experience

and intuition in the judgment of scientific work, which also relies upon a hard-to-describe

sense of aesthetics (as Albert Einstein and his ‘little finger’ have always strongly asserted).

Subjective introspection aside, three replies to the claim of above can now be given:

1. Following Popper, who strongly emphasised the element of creativity, it seems to be

rather irrelevant ‘‘how research is performed’’ as long as the generated hypotheses

are effectively testable: If testable, we do not need to care very much any more about

how they came about, such that there is no need for any fundamentalist

‘methodologism’ as far as the creation of hypotheses is concerned. In (Gregg

et al. 2001), however, we can find traces of such ‘methodologism’,1 especially at the

point where the authors complain that the ‘‘importance of a theoretical framework,

although well understood and frequently referred to, is often sidestepped in software

1 It is perhaps no surprise that particularly the social sciences clinge so strongly to the idea of methodo-
logically correct ways of hypothesis generation as main criterion of their ‘scientificness’, since their
hypotheses themselves are so much harder to test experimentally than the hypotheses generated in the
natural sciences.

240 S. Gruner

123



www.manaraa.com

development research’’ (p. 171)—note that this research ‘methodologism’ of Gregg

et al. (2001) must not be confused with the rigorous artefact production

‘methodologism’ advocated by the ‘engineers’ (as outlined above in Sect. 1).

2. Already in 1998, Gregor Snelting had published a strong warning against all sorts of

‘quackery’ in software engineering research (Snelting 1998a). Contrary to the picture

painted in Gregg et al. (2001), Snelting’s warnings are indeed well-known in the

software engineering ‘community’, and they can also inform the peer reviewing

process amongst diligent members of this ‘community’.

3. More recently, Walter Tichy has given a comprehensive overview of empirical

methods for software engineering research from within the domain of software

engineering (Tichy 2007); needless to say that that later contribution was not yet

know-able to the authors of Gregg et al. (2001). In his methodology, Tichy identified

‘‘experimental’’ versus ‘‘descriptive’’ software engineering research, whereby the

latter one was then further divided into ‘‘qualitative’’ and ‘‘quantitative’’ studies (Tichy

2007), similar to the ‘‘qualitative’’ and ‘‘quantitative’’ studies which are known in the

area of the social sciences.

The external perspective onto software engineering in (Gregg et al. 2001) in their

enquiry about the scientific-ness of software engineering becomes obvious wherever the

authors give examples of software engineering research, such as:

‘‘If a researcher is proposing an entirely new way of looking at a problem and

wonders if a system can be developed that will address the problem, then the

engineering of such a software would constitute research. For example, in the late

1980s researchers were wondering if information systems could be developed to aid

group decision making’’ (p. 171).

From a computer scientist’s perspective, however, it is hardly surprising that such

decision support systems can somehow be implemented, because the Turing Machine as

universal machine is theoretically known to be suitable for the implementation of

‘‘almost anything’’ (within the limits of the theory of computability). Internal problems of

software engineering research (for example: the invention of suitable module concepts

which can then be applied as principles to any concrete software development project)—

i.e. the engineering perspective—were not sufficiently taken into account in (Gregg et al.

2001).

In another step of argumentation the question was raised whether software engineering

would actually constitute a ‘research paradigm’ (p. 171) in comparison to other research

paradigms known in the social sciences: ‘‘While these [research] paradigms provide a good

basis for a majority of the IS research stream, they do not fully address the unique

requirements of software engineering’’ (p. 172). Though their hint to some ‘‘unique

requirements of software engineering’’ remains rather vague, the need for a software-

engineering-specific approach in our science-philosophical enquiry is acknowledged.

Nevertheless, I fail to see how software engineering, as a practice so open-ended and so

tightly interwoven with other scientific disciplines, could possibly constitute a whole new

‘research paradigm’—at least not in Kuhn’s notion of ‘paradigm’ which he had charac-

terized as epistemologically isolated and incommensurable with other paradigms. Anyway:

‘‘To alleviate limitations of the Positivist/Postpositivist and Interpretive/Con-

structivist paradigms and more directly describe the practice of IS software engi-

neering research, we introduce the Socio-technologist/Developmentalist paradigm

which addresses the valuable contribution of software systems and associated

Recent Discussions About the Foundations and the Scientificness 241

123



www.manaraa.com

processes to scientific knowledge building. […] Within the Socio technologist/

Developmentalist paradigm, reality is technologically created. […] The supporting

methodology is primarily developmental, […] The methodology’s focus is on the

technological innovations […] which are intended to affect individual and organi-

zational experience in a positive manner. The Socio-technologist/Developmentalist

paradigm allows the creation of new systems and transfer of technology to domains

that need them. The keyword is ‘creation’. IS can be viewed as social systems that

are technically implemented’’ (pp. 172–173).

Peculiarities of expression aside—it is certainly not their new ‘‘paradigm’’ which would

now suddenly ‘‘allow’’ us to create new systems, which we have always done—the pas-

sages quoted above seem to speak between the lines about a larger phenomenon which

could perhaps be analysed deeper in the terminological framework of Niklas Luhmann’s

philosophy of systems. Also their ontological assertion that ‘‘reality is technologically

created’’ (p. 172) could possibly be linked to Luhmann’s thoughts about the autopoiesis of

systems—this might perhaps become an interesting topic for future philosophical enquiry

in this context.

Next we can find in (Gregg et al. 2001) the description of their above-mentioned

‘‘SERM’’ (Software Engineering Research Methodology) framework comprising a triad of

‘‘conceptual’’, ‘‘formal’’ and ‘‘developmental’’ aspects of a software engineering project. In

this context it is interesting to read that ‘‘while development is sometimes equated with

software engineering, in the SERM framework conceptualization or the theoretical

grounding of the system requirements is suggested as the focal point of the research effort’’

(p. 174) and that ‘‘in this phase the theoretical grounding for the needs and requirements of

the research effort are defined’’ (p. 174).

This strong focus on requirements elicitation reveals that we are confronted with a

predominantly idiographic notion of ‘‘research’’, because the requirements for any soft-

ware project are always the requirements for this project, which is historically unique,

whereas the nomothetic quest for general principles or laws is not in the scope of er-

kenntnisleitendes Interesse (enquiry-guiding interests) behind such an approach. Never-

theless the authors have also acknowledged that ‘‘the accumulation of experiences and

knowledge acquired during the systems development process represents a viable research

goal in and of itself’’ (p. 175). Thus, in spite of its predominantly idiographic perspective,

the methodology presented in (Gregg et al. 2001) at least concedes that there are also some

nomothetic interests involved in software engineering research and development.

The remainder of that paper (Gregg et al. 2001) presents a meta-review of previously

published papers (by various authors) with the intention of classifying those papers along

the lines of the above-mentioned ‘‘SERM’’ framework. Finally it becomes clear that ‘‘in

this paper we investigated research philosophies as a foundation for conducting software

engineering research in the IS discipline. The impetus of our effort resulted from the

inability to fit software engineering research comfortably into the established research

paradigms from the social sciences’’ (pp. 180–181). Also the practical purpose of that

paper is finally declared: ‘‘Thus it provides a useful metric for software engineering

research in IS’’ (p. 181). The usefulness of that ‘‘metric’’ (strictly speaking, however, it is

not ‘metric’ since it was not defined in a metric space) is somewhat debatable. Their

systematic overall conclusion—‘‘we find that for software engineering to qualify as rig-

orous research, it must address issues in at least two of the three phases [of the SERM

framework]’’ (p. 175)—appears as rather ‘scholastic’ and comes to no surprise for any

serious software engineer. Indeed, their ‘scholastic’ recommendation (‘‘at least two of the

242 S. Gruner

123



www.manaraa.com

three…’’) does hardly reach beyond Snelting’s well-known concerns about ‘quackery’ in

software engineering research (Snelting 1998a, b) and does thus not add much to our

science-philosophical understanding of software engineering as an industrial and academic

discipline. The notion of ‘‘philosophical’’ in (Gregg et al. 2001) seems to be restricted to a

few rather particular issues (e.g.: the publish-ability of research papers) and does not seem

to attempt to reach out for ‘typical’ philosophical questions, such as questions about

transcendental pre-conditions, questions about the ‘Anfangsproblem’ of a science, and the

like.

The reason for the above-mentioned shortcomings is probably the too application-

oriented, external view of software engineering in (Gregg et al. 2001) which fails to behold

the discipline from ‘inside’. A sheer ‘socio-humanist’ meta-theory of software engineering

forgets the equally important issue of software engineering’s ‘engineering-ness’. Evidence

in support of this critique can also be found in (Gregg et al. 2001):

‘‘To examine its utility and to illustrate the various approaches undertaken by IS

researchers, the current software engineering research efforts in the IS domain were

mapped to our SERM framework. We focused on software engineering research

reported in seven leading IS journals: Decision Sciences, Decision Support Systems,

Information and Management, Information Systems Research, Journal of Manage-

ment Information Systems, Management Science, and Management Information

Systems Quarterly’’ (pp. 175–176).

This choice of research focus is too restricted and does not even take into account such

important and globally known software engineering venues like ICSE (Internat. Conf.

Softw. Eng.), ESEC (Europ. Softw. Eng. Conf.), or the widely distributed journal ‘‘Soft-

ware Practice and Experience’’. Contributions such as (Gregg et al. 2001) can thus only be

regarded as interesting pieces in a much larger ‘puzzle’ of philosophy of software engi-

neering, to which many further pieces must still be found.

3 Software Engineering Between Formalism and Empiricism

This section is focussed on two rather short but relevant position papers, co-authored by

Manfred Broy, Dieter Rombach, and Frank Seelisch, on the topic of the position of soft-

ware engineering amongst the sciences, especially the sciences of engineering (Broy and

Rombach 2002; Rombach and Seelisch 2008). In terms of the classification introduced in

Sect. 1, these papers were chosen for this essay because of their notable ‘physicalist’

perspective; however they including the perspective of the ‘engineers’ (which will be

further discussed below in Sect. 4). Paper (Rombach and Seelisch 2008) especially is

dealing with the problem that many of the software engineering research results do not

make it into practice, whereby the gap between software engineering research and practice

widens constantly. According to (Rombach and Seelisch 2008), the reasons for not making

it into practice range from insufficient commitment to professionalization to insufficient

consideration for practical scale-up issues and a considerable lack of empirical evidence

regarding the benefits and limitations of new software engineering methods and tools. The

major focus of their paper is to motivate the creation of credible evidence which in turn

should allow for less risky introduction of new software engineering approaches into

practice. According to (Rombach and Seelisch 2008), in order to overcome this progress-

hindering lack of evidence, both software engineering research and practice have to change

their ‘paradigms’.

Recent Discussions About the Foundations and the Scientificness 243

123



www.manaraa.com

Rombach and Seelisch started their discussion with the notorious problem that ‘‘soft-

ware engineering today, seen as a practically highly relevant engineering discipline, is not

mature enough’’ and that most of the results from scientific or academic software engi-

neering research are not finding their way into the industrial or commercial software

engineering practice—in other words, that the knowledge gap between software engi-

neering research and practice is widening (Rombach and Seelisch 2008). The authors

argued that this gap between theory and practice is due to ‘‘a tremendous lack of empirical

evidence regarding the benefits and limitations of new software engineering methods and

tools on both sides’’.

This problem leads consequently to some more science-philosophical questions about

the status of software engineering as an ‘empirical’ discipline—yes or no, and, if yes, to

what extent:

‘‘The major claim of this work is that typical shortcomings in the practical work

of software engineers as we witness them today result from missing or unac-

knowledged empirical facts. Discovering the facts by empirical studies is the only

way to gain insights in how software development projects should be run best,

i.e., insights in the discipline of software engineering’’ (Rombach and Seelisch

2008).

In this short paragraph only we can already detect two non-trivial science-philosophical

problems, which Rombach and Seelisch did not mention themselves, namely: how to

bridge the categorial gap from ontology (‘‘discovering facts’’) to deontology (‘‘how pro-

jects should be run best’’) without running into the notorious ‘naturalist fallacy’, and which

types of investigations may be methodologically admitted as valid ‘empirical studies’

under the practical condition that software engineering can obviously not happen in the

closed environment of a well-controlled chemical laboratory for the sake of the highest

possible level of repeatability and experimental precision.

Rombach and Seelisch further identified two main reasons for the current practical

problems of software engineering, namely ‘‘non-compliance with best-practice principles’’

and ‘‘non-existence of credible evidence regarding the effects of method and tools’’

(Rombach and Seelisch 2008), which leads them to the meta-disciplinary discussion of the

relationship between software engineering and computer science (informatics), in con-

tinuation of an older contribution to this discourse by Broy and Rombach (Broy and

Rombach 2002). About this relation we can read:

‘‘Computer science is the well-established science of computers, algorithms, pro-

grams and data structures. Just like physics, its body of knowledge can be charac-

terized by facts, laws and theories. But, whereas physics deals with natural laws of

our physical world, computer science is a body of cognitive laws’’, and ‘‘when

software engineering deals with the creation of large software artifacts then its role is

more similar to mechanical and electrical engineering where the goal is to create

large mechanical or electronic artifacts. […] In this sense, software engineering can

be seen as an analog set of methods for developing software, based on fundamental

results from computer science’’ (Rombach and Seelisch 2008).

In this context, we can nicely illustrate the relationships between (computer) science,

(software) engineering, and (programming) craft by a small example (which I had dis-

cussed with my colleague Markus Roggenbach some years ago); see also (Arageorgis and

Baltas 1989) for comparison:

244 S. Gruner

123



www.manaraa.com

1. Science: There exists an algorithm A which has an average-case runtime complexity

O(f(x))—proof thereof.

2. Engineering: There is a problem P which could be solved by algorithm A or by

algorithm B. Algorithm A has an average-case runtime complexity O(f(x)), Algorithm

B has an average-case runtime complexity O(g(x))—proof details are not needed, yet a

well-informed decision between the choice of A and B for solving P is made.

3. Crafts: A programmer can implement algorithm A in a suitable programming language

to build an executable computer program—no need to know anything about its

average-case runtime complexity O(f(x)).

It is not the purpose of this essay to discuss the extent of structural and methodological

similarity between computer science and physics as asserted in (Rombach and Seelisch

2008). Subjectively I believe that the alleged similarity between computer science and

physics is (at least to date) more wishful thinking than observable reality, but that is a

question for the philosophy of computer science, about which some volumes of publica-

tions already exist.2 Here we are mainly concerned about software engineering and its

relation to other disciplines, not with the meta-scientific disputes about those other dis-

ciplines themselves. Anyway, it should be clear that there must be some topical overlaps

between the philosophy of computer science and the philosophy of software engineering in

analogy to the topical relationships between computer science and software engineering

themselves.

Rombach and Seelisch continued their argument about software engineering ‘princi-

ples’, especially the ‘‘general pattern of divide and conquer’’, which is a reductionist

method of dividing a large problem into a set of smaller (and thus easier solvable) sub- and

sub-sub- problems under the a-priori assumption that the whole will not be more than the

sum of its parts. Terminologically one might criticize, perhaps somewhat pedantically, that

a ‘principle’ in the terminology of (Rombach and Seelisch 2008) should be better called a

‘maxim’, such as not to confuse ontology and deontology, Sein and Sollen, world and

method. Terminology aside, there arises the question about the limits of ‘principles’ (like

‘‘divide and conquer’’) themselves: Classically we have almost always tacitly presumed

rather simple hardware structures, such as the Zuse/von-Neumann computer architecture,

to be the material basis onto which software systems were to be developed. However, with

the possible emergence of other hardware systems, such as massive-parallel cellular

automata, in the not-too-far future our cherished ‘principles’ (like methodical reduction-

ism) might perhaps falter. In the words of Victor Zhirnov and his co-authors: ‘‘When we

consider the use of these systems [cellular automata] to implement computation for general

applications, a vexing set of software challenges arise […] and we are aware of little work

in this area’’ (Zhirnov et al. 2008). At stake is thus, from a science-philosophical per-

spective, the principle-ness of those software engineering concepts which were so far

regarded as ‘principles’ under un-reflected, accidental historical circumstances (such as the

technical and technological dominance of the Zuse/von-Neumann machine) and were

taken for granted during several decades.

About the requested empirical evidence in software engineering, the authors stated ‘‘that

having definitions and measures at one’s disposal does not automatically guarantee

that they be used. Enforcing their usage must be part of the project and can often only

be accomplished by organizational changes or even changes in the working culture’’

(Rombach and Seelisch 2008). Here I can see a door into the domains of philosophical

2 See the Philosophy of Computer Science website with many literature references at http://pcs.essex.ac.uk/.

Recent Discussions About the Foundations and the Scientificness 245

123

http://pcs.essex.ac.uk/


www.manaraa.com

ethics and philosophical anthropology with the question whether or not any change of our

‘‘working culture’’ is arbitrarily at our disposal, or if there is anything like a ‘‘human

nature’’ by which our ‘‘working culture’’ might be constrained in a non-arbitrary manner.

In this context it is also interesting to note that Tom DeMarco, previously known as a

strong supporter of metrics and quantitative measurements in the software engineering

process (DeMarco 1982), has recently dissociated himself from his earlier positions and is

now emphasising the importance of ethical concepts such as ‘value’ and ‘purpose’ beyond

the borderlines of quantitative control and controllability (DeMarco 2009). Contrary to

Rombach and Seelisch’s remarks regarding software engineering and physics, De Marco

claimed that

‘‘software development is inherently different from a natural science such as physics,

and its metrics are accordingly much less precise in capturing the things they set out

to describe. They must be taken with a grain of salt, rather than trusted without

reservation’’ (DeMarco 2009).

In the above-mentioned dispute between the ‘physicalists’, the ‘engineers’ and the

‘socio-humanists’, DeMarco has declared his new socio-humanist position as follows:

‘‘I’m gradually coming to the conclusion that software engineering is an idea whose

time has come and gone. I still believe that it makes excellent sense to engineer

software. But that isn’t exactly what ‘software engineering’ has come to mean. The

term encompasses as specific set of disciplines including defined processes […] For

the past 40 years […] we’ve tortured ourselves over our inability to finish a software

project on time and on budget. But […] this never should have been the supreme

goal. The more important goal is transformation, creating software that changes the

world […] Software development is and always will be somewhat experimental. The

actual software construction isn’t necessarily experimental, but its conception is. And

this is where our focus ought to be’’ (DeMarco 2009).

The word ‘experimental’ which DeMarco has used in his phrase above does clearly not
mean the same kind of experimental-ness which the software ‘physicalists’ who think of

experiments under well-controlled and almost laboratory-like conditions have in mind.

DeMarco has used the phrase clearly synonynmous to ‘heuristical’ or ‘explorative’, just

meaning to ‘play around’ and to ‘try things out’ in an almost Feyerabendian fashion

without too much concern for strict methodology.

This topic of experimental-ness, as vaguely mentioned by DeMarco, will now lead us

back into the discussion of the issues as they were contrarily emphasised by Rombach and

Seelisch:

‘‘Laying the foundations of software engineering thus means to: state working

hypotheses that specify software engineering methods and their outcome together

with the context of their application, make experiments, i.e. studies to gain empirical

evidence, given a concrete scenario, formulate facts resulting from these studies […],

abstract facts to laws by combining facts with similar, if not equal, contexts, verify

working hypotheses, and thereby build up and continuously modify a concise theory

of software engineering as a theoretical building block of computer science’’

(Rombach and Seelisch 2008).

This quote clearly contains the core of Rombach and Seelisch’s ‘empiricist’ or ‘phys-

icalist’ software engineering philosophy. Formally we can clearly spot their adherence to

the model of physics, with their mentioning of hypotheses, experiments, facts and laws.

246 S. Gruner

123



www.manaraa.com

But once again the science-philosophical question arises whether or not—and, if yes, to

what extent—such a formal analogy is materially justified: For example, the authors did

not clarify their notion of ‘experiment’ and its classical criterion of repeatability. How

would software engineering ‘experiments’ be controlled and isolated from their environ-

ment (which was the classical precondition of repeatability)? Has any software engineering

‘experiment’ ever been repeated de-facto? And if full repeatability cannot be granted, what

is then the degree of validity of the ‘laws’ which are supposed to emerge from such

‘experiments’? Note that we are not talking here about the repetition of ‘program-runs’ of

particular software products on particular computer platforms—we are talking about the

repeatability of wide-ranging and far-reaching design and development processes. These

are the kind of questions which philosophically minded software engineers from the

‘physicalist’ school must try to answer seriously—otherwise they would immediately run

into the same kind of difficulties as Auguste Compte with his empiricist conception of

sociology as the ‘physics of society’ more than 150 years ago.

Regarding Rombach and Seelisch’s requirements about the ‘‘verification’’ of hypotheses

in the domain of software engineering, see Karl Popper and the related discussions of

software verificationism in (Northover et al. 2008). Even earlier than (Northover et al.

2008) there is a Popperian discussion of software engineering in (Hernandez-Orallo and

Ramirez-Quintana 2000), a contribution which also challenges the wide-spread ‘formalist’

opinions that software programs would resemble mathematical-scientific ‘theories’ and

that the software development process would be a deductive rather than an inductive one.

(The ontological status of computer programs, whether they resemble mathematical-sci-

entific ‘theories’ or not, is an issue of the philosophy of computer science rather than

philosophy of software engineering.) On the other hand we can also find in (Hernandez-

Orallo and Ramirez-Quintana 2000) the explicit normative request that software engi-

neering should be predictable, in analogy to the predictability criterion of the scientificness

of the natural sciences (Rombach and Seelisch 2008); however also in (Hernandez-Orallo

and Ramirez-Quintana 2000) the question remained un-answered how such predictability

in a more ‘scientific’ type of software engineering could be method(olog)ically and

epistemologically guaranteed.

Last but not least an academic problem re-arises from (Rombach and Seelisch 2008),

namely whether software engineering should be categorized as a sub-discipline of and

within computer science, or whether software engineering should be regarded as a discipline

in its on right, with computer science as its basis and auxiliary discipline. The authors seem

to oscillate between these two classification alternatives and do not commit themselves to a

final decision in this regard. Rightly, however, it was pointed out in (Rombach and Seelisch

2008) that the immaturity of software engineering as an ‘‘engineering’’ discipline is closely

related to the following practical shortcomings and flaws: ‘‘Clear working hypotheses are

often missing. There is no time for, or immediate benefit from empirical studies for the team

who undertakes it. Facts are often ignored […]’’ and ‘‘often replaced by myths, that is by

unproven assumptions’’, which leads the authors to conclude that ‘‘up to now, a concise,

practical theory of software engineering does not exist’’ (Rombach and Seelisch 2008).

The remainder of that paper deals with particular examples of popular software engi-

neering myths, and the suggestion of some concrete research questions to stimulate

research programmes with the aim of eventually being able to replace those myths (for

example: about the usefulness and effectiveness of software testing) by more solid and

better corroborated long-term knowledge.

As Rombach and Seelisch (2008) was directly related to an earlier contribution by Broy

and Rombach (2002) it makes sense now to round up this section of this essay by taking

Recent Discussions About the Foundations and the Scientificness 247

123



www.manaraa.com

into account a few additional aspects from Broy and Rombach (2002), in the light of which

the discussions of Rombach and Seelisch (2008) can be even better understood. For the

remainder of this section, all verbatim quotations will be taken from Broy and Rombach

(2002), and only the according page numbers (p. xyz) will be given after every quotation.

The central issue of Broy and Rombach (2002) is that software engineering aims at the

development, maintenance and evolution of large software systems in an engineering

manner, thereby using well-established, systematic principles, methods and tools. ‘Role

models’ therefore are, according to Broy and Rombach (2002), the methods from the

classical engineering sciences, such as machine engineering, electrotechnics, or civil

engineering. As an initial definition of software engineering we can find in Broy and

Rombach (2002):

‘‘Purpose of the industrial engineering of software is the development of large scale

software systems under consideration of the aspects costs, deadlines, and quality’’

(p. 438).

Already this initial definition by Broy and Rombach could lead us further into a dis-

cussion of general philosophy of technics, namely what constitutes an ‘industry’: is

‘industry’ a large number of people and how they organise their work in a Taylorist/

Fordian manner, or is it the application of accumulated ‘capital’ (i.e.: machinery and

automated tools) in the production process? Is the term ‘software industry’ materially

justified if we observe that most software producing enterprises in our days are in fact

hardly any larger—in terms of numbers of workers—than the workshop of a traditional

craftsman and his helpers? Is ‘industry’ a rather misleading metaphor in this context which

does not do justice to the actual way in which software is actually being produced? Or are

we here already dealing with a completely new notion of the term ‘industry’ itself, which is

now no longer associated with traditional images of iron, smoke, and armies of workers

marching through the gates of their factory? Those would be interesting new questions for

a general philosophy of technics and technology; however these questions cannot be

further discussed within the scope of this essay.

The general theme of Broy and Rombach (2002) was the degree of difference and

similarity between software engineering and other engineering disciplines, on the basis of

the immateriality of software as ‘virtual thing’. Particularly they mentioned in this context

the difficulties arising from the software’s abstractness, the software’s multiple aspects of

syntax and semantics, the intrinsically hard-to-understand, complex and dynamic system

behaviour to which software is only a static description, as well as the absence of natural

physical constraints as protection against weird constructions. On these premises Broy and

Rombach (2002) concluded—whereby their conclusions can still be regarded as valid

today—that software engineering as a discipline has not yet reached the degree of pro-

fessional maturity which classical engineering disciplines have already reached, that ‘‘the

discipline is still struggling with its self-understanding’’ (p. 439), and that ‘‘foundations and

methods are partially still missing’’ (p. 438).

On the ontological status of software, which was more comprehensively discussed

elsewhere (Northover et al. 2008), it was rightly pointed out by (Broy and Rombach

2002) that software enhances the intellectual abilities of its users, whereas material

hardware enhances the bodily abilities of its users; the latter thought leads straight back

to the classical machine theory, formulated already in 1877 century by Kapp in his

Grundlinien einer Philosophie der Technik. Related to Heidegger’s notion of ‘Zeug’

(equipment), a software-plus-computer system has elsewhere been dubbed as ‘Denkzeug’

248 S. Gruner

123



www.manaraa.com

(think-equipment),3 in contrast to the Werkzeug (work-equipment) of the material world.

The same philosophical thought, though not through the same words, was thus expressed

by Broy and Rombach (2002).

The most interesting part of Broy and Rombach (2002) in the context of this essay is

their attempt to classify software engineering in a category of related disciplines, with the

purpose of contributing to the self-understanding (the lack of which they had previously

identified) of the software engineering discipline. Their classification scheme is interesting

enough to keep us occupied for the remainder of this section. The main question is, like in

Rombach and Seelisch (2008), whether software engineering is included as a sub-field of

informatics (as it is currently enshrined in the curricula of many universities, with software

engineering courses being lectured as part of the informatics degree), or whether software

engineering is a field on its own with informatics as its separate basis. Also Broy and

Rombach (2002) did not reach a decisive conclusion in this regard, though they clearly

tend towards the latter solution with the analogy argument: ‘‘Imagine that physicists with a

specialisation in mechanics would be employed as mechanical engineers!’’ (p. 441). On the

other hand one could ask back, naively, if that is not only an argumentum ad hominem,

especially if we take into consideration that physicists are de-facto employed in all sorts of

jobs and positions, including positions as programmers in the software industry. Anyway,

the basic classification by Broy and Rombach (2002) looks as depicted in Fig. 1.

In Fig. 1, taken directly out of (Broy and Rombach 2002), we can see three categories of

sciences, namely auxiliary sciences (Hilfswissenschaften), foundation sciences (Grundla-

genwissenschaften), and engineering sciences (Ingenieurwissenschaften). Software engi-

neering appears here in the latter category, with electrical and mechanical engineering as

some examples of ‘sister’ sciences. Sciences so different from each other as physics,

informatics, and psychology appear here all in the category of foundation sciences (middle

layer of Fig. 1), whereas mathematics appears in the bottom layer of Fig. 1 as auxiliary

science; note that a similar viewpoint had already been expressed in (Hoare et al. 1998).

Fig. 1 Classification of software engineering according to Broy and Rombach (2002)

3 The term Denkzeug is now so popular in German philosophical language that I was not able to trace its
origin, but I know that it was also used by Walter Zimmerli in his philosophy of (computer) technology in
the 1990s.

Recent Discussions About the Foundations and the Scientificness 249

123



www.manaraa.com

There are some obvious omissions in the diagram of Fig. 1 which do not need to be

discussed any further, for example: mathematics is obviously also an auxiliary science to

economics (Betriebswirtschaft in the diagram), and economics must surely be taken into

account not only for commercial software engineering (as shown in Fig. 1) but also for

commercial mechanical engineering (not depicted in Fig. 1). More interesting is the

question here why psychology does only point to software engineering but not to

mechanical engineering—are there not any psychological issues to be considered when any

potentially dangerous apparatus shall be constructed?—and why mathematics does not

point directly also to the engineering sciences (only indirectly via the foundation sciences)?

This diagram can only suggest that (Broy et al. 2002) seem to believe that whenever a

software engineer is applying mathematics, then he is actually already doing informatics,

not software engineering any more. This is in contrast to other, more ‘formalist’ schools of

thought, according to which mathematical methods are genuine software engineering

methods,4 not only informatics-supporting methods at the basis of software engineering.

As far as the mathematicalness of engineering in general and software engineering in

particular is concerned, it was Tom Maibaum, who has recently pointed out two further

issues: On the one hand he asserted that ‘‘engineers calculate, mathematicians prove’’,5

which means that engineers are mostly applying ‘distilled’ handbook-mathematics which

had been developed outside the world of engineering (Maibaum 2008). On the other hand,

the branch of mathematics most relevant to classical engineering is the infinitesimal dif-

ferential calculus (as it was developed since Leibniz and Newton) whereas the branch of

mathematics most relevant to software engineering is discrete mathematics, set theory and

formal logics (Maibaum 2008).

Of course it is necessary to ‘calculate’ in order to ‘prove’, and of course also an engineer

(not only a mathematician) wants to ‘prove’ (by means of calculation) that some design

concept or model is consistent and feasible before the according artefact is produced. But

that was not Maibaum’s point in this discussion. The issue here is: Whereas the classical

engineering disciplines already have a large volume of distilled handbook-mathematics

available for application, a corresponding formula-handbook readily applicable for soft-

ware engineering calculations is—at least at the moment—nowhere to be seen, which must

be highly problematic for those philosophers of science, who—like Kant—tend to bind

their notion of ‘scientificness’ very strongly to the condition of ‘mathematicalness’.

The notion of ‘mathematicalness’ itself is still problematic in software engineering, too,

as it was comprehensively explained in (Kondoh 2000): it seems as if the old Grundla-

genstreit in pure mathematics (between the logicists/formalists and the anti-logicists during

the early twentieth century) is now experiencing an ‘applied revival’ in the context of

software engineering, whereby many software engineers would like to operate as ‘math-

ematically’ as possible (in order to resemble the classical engineers with their status of

professional maturity) but cannot always agree on the concrete forms and methods of

mathematics which any ‘mathematicalness’ would entail (Kondoh 2000). Here I can

actually see the some deeper philosophical problems which were summarily characterised

as ‘‘immaturity’’ and ‘‘lack of foundations’’ in (Broy and Rombach 2002).

Returning to the discussion of Fig. 1, informatics—here regarded as foundation science

to software engineering—is also an issue in itself. As it was rightly remarked in (Broy and

Rombach 2002), informatics itself is not a monolithic science. Instead, informatics has

various parts and aspects, such that ‘‘informatics structures itself [further] into informatics

4 See for example the organisation Formal Methods Europe (FME), online at http://www.fmeurope.org/.
5 Maibaum attributed this quotation to Tony Hoare.

250 S. Gruner

123

http://www.fmeurope.org/


www.manaraa.com

as foundation science and informatics as engineering sciences’’ (p.441). If I may give two

simple examples: A formalised theory of Chomsky grammars and a large body of

empirical, practical knowledge about the design and development of operating systems are

both included in the wide domain of informatics, whereby the formal grammars would be

‘mathematics’ whereas the operating systems would be ‘engineering’ (in this simplified

picture). Academically this diversity within the field of informatics itself is reflected by the

distribution of informatics departments across the faculties at various universities—typi-

cally (with few exceptions) either in faculties of mathematics and natural sciences, or in

faculties of engineering and technology.

The problem now with the classification by (Broy and Rombach 2002), as depicted in

Fig. 1, is that it treats informatics too simplistically as mathematics-based foundation

science, thereby ignoring other, engineering-related sub-sciences of informatics, such as

the above-mentioned operating systems.

Consequently, a string of further problems emerges: If software engineering has been

‘‘lifted out’’ of the domain of informatics into the domain of engineering, should then

not—by analogy—also the field of operating systems be lifted out of informatics into the

domain of engineering?—and so on, until informatics, stripped bare of all practical aspects

would be nothing more than formalised Chomsky grammars and discrete algebra? On the

other hand, if we would leave the operating systems where they are, namely in informatics,

would not then be also the operating systems, according to Fig. 1, belong to the founda-

tions of software engineering?

Though this is not wrong, it is only half of the picture: In fact, operating systems are, in

the end, nothing else but large software systems, which means that software engineering

should also be listed, vice versa, as the foundation science for operating systems (Nort-

hover et al. 2008) within the domain of informatics. In Fig. 1, however, the link between

informatics and software engineering is only unidirectional. In this context it is also

interesting to note that the mutual dependency between informatics and software engi-

neering, or parts thereof (which is not depicted in Fig. 1), corresponds quite well with the

old Constructivist argument about the mutual dependency between physics and engi-

neering of technical artefacts to be used for physical measurements—in contrast to the

classical interpretation of physics as the unidirectional foundation of engineering as it was

also depicted by Broy and Rombach (2002) in Fig. 1.

Let us now ask the question: What is it that ‘‘lifts’’ software engineering up onto the

level of engineering, above informatics, in Fig. 1? The answer, given by Broy and

Rombach (2002) is: ‘‘experience’’, such that, for example: ‘‘A new method is perhaps a

remarkable result of informatics, but without robust empirical experiences about its ef-

fectivity and limits of applicability it is not a contribution to software engineering!’’ (p.

446). This position is schematically depicted in Fig. 2, which is also taken directly from

Broy and Rombach (2002).

Problematic with the above-mentioned quote is the tacit equation ‘Software Engineering

is Informatics plus Empiricism’, which reduces by implication the science of informatics to

purely rationalist, non-empirical science. On the other hand, informatics was compared to

physics in Fig. 1 of Broy and Rombach (2002)—would they then, by analogy, also assert

the equation ‘Engineering is Physics plus Empiricism’, thereby implicitly reducing physics

to pure rationalist scholastics (as it has been historically the case throughout the Latin

middle ages)?

Interesting in Fig. 2 is, however, the terminological distinction between Software

Technics (Softwaretechnik in Fig. 2) and Software Engineering. This terminological dis-

tinction should not only ring a bell in the house of general philosophy of technics and

Recent Discussions About the Foundations and the Scientificness 251

123



www.manaraa.com

technology; this distinction is also interesting because it breaks the usual translation-

synonymy between the English term ‘Software Engineering’ and the equivalent German

term ‘Softwaretechnik’. Braking this usual synonymy, (Broy and Rombach 2002) have

indeed made a remarkable step towards a deeper understanding of software engineering as

a theoretical and practical discipline. Software Technics, as depicted in Fig. 2, is now

regarded by Broy and Rombach (2002) as a part of Software Engineering, whereby other

disciplines (like economics, general systems and process theory, etc.) are needed to bridge

the gap between technics and engineering.

It is debatable why only the two components ‘formal methods’ (Formale Methoden in

Fig. 2) and ‘systems technics’ (Systemtechnik in Fig. 2) should constitute the core of

software technics (Softwaretechnik in Fig. 2), but the terminological refinement is

remarkable and, so I believe, in principle fruitful. Though Broy and Rombach (2002) did

not mention Kondoh (2000), their distinction between ‘software technics’ and ‘software

engineering’ is quite similar to Kondoh’s distinction between ‘‘Abstract Software Engi-

neering as a research field and Precision Software Engineering as an engineering disci-

pline’’ Kondoh (2000); however Broy and Rombach (2002) and Kondoh (2000) clearly

differ about the validity of the physics/computer-science analogy.

Now having ‘software technics’ and ‘software engineering’ available as distinguishable

terms in our terminology, one question arises immediately, namely: what about ‘software

science’? This term is indeed in use elsewhere,6 but (Broy and Rombach 2002) did not

attempt to work it explicitly into their terminological schema, though various questions and

problems regarding the scientificness of the discipline had already been discussed (Snelting

1998a; Gregg et al. 2001).

In a first and provisory attempt to complete the schema of Broy and Rombach (2002), I

suggest to define—however debatable—‘software science’ as a comprehensive science

about software engineering and software technics (software technology), comprising not

only theoretical and practical aspects of software (its conceptualisation, its construction, its

application) itself, but also meta-scientific and methodological self-reflexions.

Fig. 2 Components of software engineering according to Broy and Rombach (2002)

6 See for example the European association of software science and technology (EASST), online at
http://www.easst.org/.

252 S. Gruner

123

http://www.easst.org/


www.manaraa.com

This definition of ‘software science’, though perhaps still premature, fulfills at least the

minimum condition of definition-ness by distinguishing ‘software science’ from other

sciences. At the same time the definition wide enough to comprise new (and much-needed)

research activities into the direction of cause-effect-analyses, with the purpose of shedding

some brighter light onto the software ‘‘myths’’ mentioned in Rombach and Seelisch (2008),

as well as onto the opinion-based software ‘‘fashions’’ and ‘‘gurus’’ mentioned in Broy and

Rombach (2002). The definition of above also comprises Kondoh’s notion of ‘‘Abstract

Software Engineering’’ (Kondoh 2000).

Of course such ‘software science’ cannot be value-free: it is indeed driven by the values

of ‘better’ insight and ‘better’ understanding in almost the same way in which engineering

is driven by the value of designing and producing ‘better’ products, whereby the word

‘better’ indicates the presence of an underlying ethos.

4 Radical Versus Normal Design

In Sect. 2 we had discussed a ‘socio-humanist’ approach to software engineering which

had by-and-large ignored the engineering-ness of that discipline. In Sect. 3 we had dis-

cussed a rather ‘physicalist’ approach to software engineering which took its engineering-

ness in principle for granted and mainly requested some further methodological (including:

mathematical and experimental) maturation in order to accelerate the historical process of

‘‘catching up’’ with the other (older) engineering disciplines. In this section I shall discuss

yet another position which neither ignores the question of engineering-ness, nor takes it for

granted as an established fact. This position was recently expressed by Tom Maibaum,

especially in his lecture on ‘‘Formal Methods versus Engineering’’ (Maibaum 2008). The

key distinction here is the one between ‘‘radical Design/Engineering’’ versus ‘‘normal

Design/Engineering’’, which is obviously derived from Kuhn’s well-known distinction

between ‘normal science’ and ‘science in crisis’.

According to Maibaum (2008), who also referred to Rogers’ Nature of Engineering

(Rogers 1983), the distinction between radical and normal design/engineering is closely

related to the difference between systems and devices, whereby radical design creates

systems, whereas normal design produces devices. In this terminology, a ‘device’ has to be

understood as something ‘usual’ and ‘well known’, the production of which does not

confront us with any fundamental challenges any more and only requires small-scale

improvements every now and then, in analogy to the ‘puzzle solving’ in Kuhn’s ‘normal

science’. Motor cars are typical examples of devices in this sense. Since about hundred

years they are being designed with four wheels on a more or less rectangular chassis and a

combustion engine sitting usually between the front wheels, such that the differences

between a car model of the year 2009 and a car model of the year 1929 can be found in all

the details but not in its fundamental principles. On the contrary a ‘system’ is, in this

terminology, any product that is not a device; a system thus carries all the flavour of

newness, novelty, complicatedness, challenge, difficulty, irritation, non-manageability, and

the like.

On these premises, said Maibaum, engineering research aims at turning systems into

devices. Engineering research thus aims at making a transition from radical to normal

design or normal engineering. But what are the operational pre-conditions of normal

engineering? At least the following three can be identified: a high level of professional

specialisation, a high level of component standardisation, and a well established, stand-

ardised methodology with readily available and applicable ‘handbook knowledge’,

Recent Discussions About the Foundations and the Scientificness 253

123



www.manaraa.com

whereby it is also obvious that these three conditions will mutually support and reinforce

each other.

For example, a railway engineer will typically not design a production plant for agri-

cultural fertilisers, but the railway engineer will also typically not design completely new

bolts and screws for every new railway project; there are standard bolts and screws in

various sizes readily available to be used in the project. On these premises Maibaum

argued that software engineering is still on the developmental level of crafts, far away from

actually being engineering: ‘‘Unfortunately there is not all that much engineering material

to communicate to students’’ (Maibaum 2008).

To find evidence in support of this verdict, we have to revisit those three criteria of

‘normal engineering’ and see to what extent they match our current reality of software

engineering in its industrial practice as well as in its academic (re)presentation:

1. Imagine we would only have ‘hardware engineers’ in contrast to ‘software engineers’,

and that such an imaginary ‘hardware engineer’ would be expected to design railway

bridges, plants for the production of agricultural fertilisers as well as electronic micro

chips. Whereas such a suggestion would be deemed insane in the world of classical

engineering, in the domain of software engineering this is, to date, mostly the case

(and has its ultimate basis in the concept of the Turing machine as the ‘universal

machine’).

2. There is no shortage of academic research and conferences on the topic of software

components and component-based software development.7 However, the acceptance

of these ideas in the industrial software business is only slow, the level of software re-

use from project to project is de-facto low, and most software modules in industrial or

commercial software projects tend to be developed from scratch again and again. This

is only one example of the widening ‘‘gap between research and practice’’ mentioned

in Rombach and Seelisch (2008).

3. With regard to the third criterion of above, one can find in the history of software

engineering three ‘success stories’ about particular classes of software systems which

can now be produced quite easily following standard approaches and procedures, such

that they can be regarded as having reached ‘‘device’’ status in the terminology of

above. These three well-understood classes of software systems are compilers,

operating systems, and relational database systems. Here, however, we have made the

academic mistake of removing these successful ‘device’ types out of our regular

software engineering curriculum, treating them as something completely different,

such that software engineering (minus compilers, databases and operating systems) is

still doomed to appear as the un-known domain of ‘radical design’, with its consequent

dominance of opinion-based ‘‘gurus’’ and ‘‘schools’’. (Artificial Intelligence research,

by the way, had a structurally similar problem: For every puzzle solved, the goal posts

of the very definition of ‘intelligence’ were ex-posteriori shifted further, such that

Artificial Intelligence continued to appear as un-intelligent as ever.)

As a consequence of this discussion it should have become clear by now that another

objective of software science, as I have tried to define it in Sect. 3, should be the identi-

fication of further, suitable (sub) classes of software systems, which can then be treated as

‘devices’ (like compilers, databases, and operating systems) in procedures of ‘normal’

7 See for example CBSE, the annual symposium on component based software engineering, published
regularly in the Lecture Notes in Computer Science.

254 S. Gruner

123



www.manaraa.com

engineering, if software engineering wants to make the transition from ‘crafts’ to genuine

‘engineering’.

Sociology of science will of course tell us that such a transition from radical to normal

design in software engineering will face some resistance from those ‘‘gurus’’, whose status

of guruness depends exactly on the continuation of the current predominance of the radical

design situation—see for example: ‘‘creating software that changes the world’’ (DeMarco

2009)—however this discussion is no longer in the scope of this essay. I am also not (yet)

able to answer the question whether such a transition from crafts to engineering, from

radical to normal design, would make a ‘paradigm shift’ in the Kuhnian sense of the term,

though I tend to believe that such a transition would come gradually and evolutionary, thus

missing the ‘revolutionary’ criterion with which a Kuhnian paradigm shift is usually

associated (Northover et al. 2008).

Anyway, at this point of our discussion of Maibaum (2008) we can now also see the

notorious quarrel between the school of the ‘Agile Alliance’ versus the school of ‘Rigorous

Processes’, as it was described in Northover et al. (2008), in a considerably clearer light:

the agile methods obviously belong to the exciting domain of radical design of ‘systems’,

whereas the rigorous processes (as they are strongly advocated, for example, by the

software engineering school of Japan) belong to the calmer and less spectacular domain of

normal design and engineering of software products with the ontological status of

‘devices’.

Last but not least, at the end of this section, it might also be interesting to note from an

onto-philosophical perspective that those ‘devices’ (of normal engineering) are coming

much closer to Heidegger’s early notion of Zeug (which Heidegger had characterised by its

familiarity) than the un-familiar ‘systems’ (in the little-known domain of ‘radical design’),

which seem to be closer related to Heidegger’s later notion of the Gestell (i.e.: the tech-

nological form of being which always haunts and challenges us in our modern existence).

Put into Heideggerian terms, normal engineering would thus aim at a re-transformation of

Gestell to Zeug, however software engineering, according to Maibaum, has (by-and-large)

not yet reached this status of normal engineering.

5 Norm and Form

The main difference between science and engineering, from the perspective of theoretical

philosophy, is the difference between ‘what is’ and ‘what should be’. Engineering is, in the

end, a normative discipline, for example: across this river there should be a bridge, it

should withstand a strong storm, and it should allow for a traffic capacity of 1,000 vehicles

per hour. Software engineering is not different from other fields of engineering in this

regard. This normative aspect which (software) engineering shares with the old discipline

of jurisprudence was nicely explained by Luigi Logrippo, in his recent paper on normative

systems (Logrippo 2007), which I have chosen as the last ‘paradigmatic’ example to be

mentioned in this essay-review. The papers which I had discussed in the previous sections

did not sufficiently mention this normative aspect of engineering, such that this essay-

review would be rather incomplete if it would finish without any remarks in this regard:

‘‘It is argued here that there are many concepts and methods in common between

policy systems used in Information Technology and Jurisprudence, i.e. legal theory.

These concepts are found in the research area of ‘normative systems’ which

encompasses them and provides a framework for unifying research. It is further

Recent Discussions About the Foundations and the Scientificness 255

123



www.manaraa.com

argued that advantages can be accrued to both research areas by favoring inter-

changes of methods and principles in this unifying framework. A distinction is made

between norms in rule-style and norms in requirements-style. Issues of completeness,

consistency and conflict are considered. Concepts that are useful in this research area

include defeasible logic and ontologies. Useful tools are theorem provers and model

checkers’’ (Logrippo 2007).

What Logrippo has called the ‘requirements style’ are norms of the form which we can

find, for example, in the codex of Moses: ‘you shall not steal’. What Logrippo has called

the ‘rule style’ are norms of the form which we can find, for example, in the codex of

Hamurabi: ‘if anyone steels cattle or sheep… then the thief shall pay 30-fold…’ (Logrippo

2007). Thus, rule-style norms, with their more precise specification of applicability con-

ditions and action consequences, are formally more similar to the laws of nature as they are

formulated by the natural sciences and are then productively used in engineering. Con-

sequently, what we can call an implementation of a software system in software engi-

neering must be a valid transformation from requirements (‘Moses-style’ norms) into

behavioural system patterns (‘Hamurabi-style’ norms) by which the implemented system is

then fully characterized (Logrippo 2007). This transformation must be carried out in such a

way that conflicts and inconsistencies are avoided and resolved as far as possible (Logrippo

2007). Here we can indeed find a meeting point between the philosophies of science and

engineering, and the philosophies of norms and laws, or, in other words: a meeting point

between ontology and deontology, with methodology as the binding ‘glue’.

6 Summary, Conclusion, Outlook

In this essay-review, intended as continuation of (Northover et al. 2008), I have discussed

several science-philosophical issues around the emerging disciplines of software engi-

neering and software science. The question about the extent of ‘engineering-ness’ in

software engineering has been a main theme throughout this essay, though other issues,

including terminological ones, were also addressed. This essay-review presented and

discussed relevant recent contributions to the philosophical and methodological discourse

within the discipline of software engineering, about the scientificness of this discipline,

also in comparison to other, related disciplines. The main problems in this context were

exposed and explained—though not solved—especially for those readers who are not

software engineers themselves. The discussion in this essay-review was focussed on typical

‘socio-humanist’ versus ‘physicalist’ approaches to the understanding of software engi-

neering as a modern science. An original contribution of this essay-review was a pre-

liminary definition of the term ‘software science’, subject to further discussion and

critique. Similar to what Kuhn has described in his history of science, these fields of

software engineering and software science are still in need of further science-philosophical

clarification, for the sake of a better understanding and self-understanding of this still

‘young’ discipline between theory and practice, academia and industry.

There exists an ongoing meta-scientific, science-philosophical debate ‘behind the

scenes’ on software engineering amongst philosophically minded software engineers

themselves, though not yet sufficiently amongst professional philosophers of science.

Several positions and ‘schools’ participating in this debate have been identified in this

essay, and several example papers, representative of those ‘schools’, have been discussed.

In terms of Kuhn, however, it has not yet been clarified whether this multiplicity of

256 S. Gruner

123



www.manaraa.com

software engineering ‘schools’ would indicate a ‘pre-paradigmatic’ state of affairs (i.e.:

‘science’ not yet established), or an ‘inter-paradigmatic’ state of affairs (i.e.: science ‘in

crisis’). The long-term goal of this discussion is to establish a special—yet interdiscipli-

nary—philosophy of software engineering, being part of general philosophy of science as

well as part of general philosophy of technics and technology, in analogy to other already

existing special philosophies of science, such as the philosophy of biology (meta biology),

the philosophy of mathematics (meta mathematics), and the like. In the table of Fig. 3 I

have summarised four examples of engineering disciplines, including their ‘parent sci-

ences’ and some further important characteristics. This table shows clearly that software

engineering is less than other (‘classical’) engineering disciplines constrained by the laws

of nature; this allows for even more freedom of human ingenuity and consequently leads

also to an even greater potential of errors and mistakes. Note, however, the grammar

constraint: Programming languages must always have a well-defined formal syntax, and

they must also be inherently consistent from a logical point of view.

Moreover, there are further differences between different engineering disciplines as far

as their efforts in the categories design and (re-) production are concerned. Take, for

example, the design and construction of a bread-toaster in the classical manufacturing

industry: In a first process, an industrial designer is designing a prototype of the bread-

toaster, which is a comparatively simple thing. Then, in a second—and considerably more

complicated—process the production engineers have to design the machinery by which the

components of the bread-toaster can be produced and assembled in a factory for mass-

production. In software engineering, on the contrary, all mental efforts have to be invested

into the design of the software prototype, which has a considerably higher structural

complexity than the bread-toaster of this example. Mass-multiplication of the software

product, on the other hand, comes almost for free: because it is software (i.e. immaterial

information) it can simply be copied on almost any available computer. This also implies

that software, as ‘entity’, comprises both model aspects and product aspects. Figure 4

summarizes various engineering disciplines, including software engineering, in a two-

dimensional matrix with respect to their efforts in design and (re-) production.

Fig. 3 Classification and characterisation of several engineering disciplines

Recent Discussions About the Foundations and the Scientificness 257

123



www.manaraa.com

Towards a future philosophy of software engineering, this essay can only be regarded as

yet another very small step. Thus this concluding section is actually far away from being a

definitive conclusion of the actual matter. Counter critique to my critique is expected, and I

especially hope that professional philosophers of science—which I am not—will find this

topic interesting enough to be included into their discourses. This new branch in the tree of

philosophy of science can only grow and bear fruits if philosophically minded software

engineers (such as the ones mentioned and quoted throughout this essay) and technolog-

ically interested philosophers begin to communicate with each other in an interdisciplinary

discourse.

Open issues and fundamental problems, which are still being debated inconclusively so

far, are (amongst others): Where is the position of software engineering between ‘science’

and (classical) ‘engineering’? Does the ‘scientificness’ of software engineering resemble

‘physical’ scientificness (nomothetic empiricism) or rather ‘mathematical’ scientificness

(formalism)? In other words: is (or should be) software engineering rather an ‘inductive’ or

rather a ‘deductive’ discipline?—or maybe rather an ‘idiographic’ and ‘social’ discipline,

as it is claimed by the ‘socio-humanists’ in this field?

Moreover, as far as the above-mentioned ‘mathematicalness’ of software engineering is

concerned: does (or should) this mean only ‘fully axiomatised calculi’ (position of for-

malism, logicism, logico-positivism) for mechanized (automated) deductions? Or can (or

should) ‘mathematicalness’ in software engineering also include some ‘weaker’, more

traditional forms of ‘mathematicalness’ (position of pre- or anti-logicism), as advocated,

for example, by Raymond Boute or Hidetaka Kondoh (Kondoh 2000)? In this context it

might be also be historically interesting to observe a kind of ‘re-incarnation’ of the old

‘Grundlagenstreit’ of mathematics in the new application domain of software engineering.

Further new questions, issues and problems in the philosophy of software engineering

will surely emerge as long as this discourse continues in ‘co-evolution’ with the newest

results and developments in its object (or subject) discipline.

Acknowledgments Thanks to the students of my Software Engineering seminar in 2008 at the University
of Pretoria for interesting discussions on the context of this article. Thanks also to Tom Maibaum for
inspiring conversations during the ICFEM International Conference on Formal Engineering Methods in
Kitakyushu, Japan, October 2008. Also the fruitful discussions with my colleagues Derrick Kourie and
Morkel Theunissen are gratefully acknowledged. I also thank Markus Roggenbach for an example which I

Fig. 4 Comparison of design and production efforts in different engineering areas

258 S. Gruner

123



www.manaraa.com

have used in Sect. 3. Last but not least thanks to the editors and reviewers of this journal for their thoughtful
feedback and helpful comments on the earlier drafts of this contribution, as well as to the production office
for their professional typesetting of the manuscript.

Appendix: Further Reading8 in the Wider Context of this Discourse

Armour, P.G. (2006). The Business of Software. Communications of the ACM, 49/9,

15–17.

Bergin, T.J. (2007). A History of the History of Programming Languages. Communi-
cations of the ACM, 50/5, 69–74.

da-Cunha, A.D. & Greathead, D. (2007). Does Personality matter?—An Analysis of

Code-Review-Ability. Communications of the ACM, 50/5, 109–112.

Feitelson, D.G. (ed.) (2007). Experimental Computer Science. Communications of the
ACM, 50/11, 24-59.

Floridi, L. (1999). Philosophy and Computing: An Introduction. Routledge.

Florman, S.C. (1996). The Introspective Engineer. St. Martin’s Griffin.

Fujita, H. & Pisanelli, D. (eds.) (2007). New Trends in Software Methodologies, Tools

and Techniques. Proceedings of the 6th SOMET Conference. IOS Press.

Glass, R.L. (2007). One Man’s Quest for the State of Software Engineering’s Practice.

Communications of the ACM, 50/5, 21-23.

Jeffries, R. & Melnik, G. (Eds.) (2007). Test-Driven Development. IEEE Software,
24/3, 24– 83.

McBride, M.R. (2007). The Software Architect. Communications of the ACM, 50/5,

75–82.

Rajlich, V. (2006). Changing the Paradigm of Software Engineering. Communications
of the ACM, 49/8, 67–70.

Sugumaran, V. & Park, S. & Kang, K.C. (eds.) (2006). Software Product Line Engi-

neering. Communications of the ACM, 49/12, 28–89.

Turski, W.M. (2000). Essay on Software Engineering at the Turn of the Century.

Lecture Notes in Computer Science, 1783, 1–20.

Vincenti, W.G. (1993). What Engineers Know and How They Know It: Analytical
Studies from Aeronautical History. Johns Hopkins University Press.

References

Arageorgis, A., & Baltas, A. (1989). Demarcating technology from science: Problems and problem solving
in technology. Zeitschrift für allgemeine Wissenschaftstheorie, 20(2), 212–229.

Broy, M., & Rombach, D. (2002). Software engineering: Wurzeln, Stand und Perspektiven. Informatik
Spektrum, 16, 438–451.

DeMarco, T. (1982). Controlling software projects: Management measurement and estimation. Yourdon
Press: Prentice Hall.

DeMarco, T. (2009). Software engineering: An idea whose time has come and gone? IEEE Software, 26(4),
95–96.

Gregg, D. G., Kulkarni, U. R., & Vinze, A. S. (2001). Understanding the philosophical underpinnings of
software engineering research in information systems. Information Systems Frontiers, 3(2), 169–183.

8 Most of the papers listed in this appendix are written in a rather non-technical style and should thus be
understandable also for readers not familiar with the field of software engineering. Note that I do not claim
this to be a complete list of all the relevant literature in the context of this essay-review; this list should
rather be taken as an ‘‘interesting selection’’ of recommendable and easily accessible titles, which are
suitable for pointing the non-expert reader to some key issues in the wider area of software engineering.

Recent Discussions About the Foundations and the Scientificness 259

123



www.manaraa.com

Hernandez-Orallo, J., & Ramirez-Quintana, M. J. (2000). Software as learning-quality factors and life-cycle
revised. Lecture Notes in Computer Science, 1783, 147–162.

Hoare, C. A. R., & He, J. (1998). Unifying theories of programming. London: Prentice Hall.
Kondoh, H. (2000). What is ‘Mathematicalness’ in Software Engineering?—Towards precision software

engineering. Lecture Notes in Computer Science, 1783, 163–177.
Logrippo, L. (2007). Normative systems: The meeting point between jurisprudence and information tech-

nology? In H. Fujita & D. Pisanelli (Eds.), New trends in software methodologies, tools and techniques
(pp. 343–354). Amsterdam: IOS Press.

Maibaum, T. (2008). Formal methods versus engineering. Proceedings of the First International Workshop
on Formal Methods in Education and Training, at the ICFEM International Conference on Formal
Engineering Methods, Kitakyushu, Japan.

Northover, M., Kourie, D. G., Boake, A., Gruner, S., & Northover, A. (2008). Towards a philosophy of
software development: 40 years after the birth of software engineering. Zeitschrift für allgemeine
Wissenschaftstheorie, 39(1), 85–113.

Rogers, G. F. C. (1983). The nature of engineering. Palgrave: Macmillan.
Rombach, D., & Seelisch, F. (2008). Formalisms in software engineering: Myths versus empirical facts.

Lecture Notes in Computer Science, 5082, 13–25.
Snelting, G. (1998a). Paul Feyerabend und die Softwaretechnologie. Informatik Spektrum, 21(5), 273–276.
Snelting, G. (1998b). Paul Feyerabend and software technology. Software Tools for Technology Transfer,

2(1), 1–5.
Tichy, W. F. (2007). Empirical methods in software engineering research. Proceedings 4th IFIP WG 2.4

Summer School on Software Technology and Engineering, Gordon’s Bay, South Africa.
Zhirnov, V., Cavin, R., Leeming, G., & Galatsis, K. (2008). An assessment of integrated digital cellular

automata architectures. Computer, 41(1), 38–44.

260 S. Gruner

123



www.manaraa.com

Copyright of Journal for General Philosophy of Science is the property of Springer Science & Business Media

B.V. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright

holder's express written permission. However, users may print, download, or email articles for individual use.


